
(model
 [hole_1 (bv #x65ee 64)]
 [hole_2 (bv #x07ed 64)])

(define (aarch64)
 (let* ([w0 (bv #x6ddb 64)]) w0))

(define (riscv)
 (define-symbolic hole_1 (bitvector 64))
 (define-symbolic hole_2 (bitvector 64))
 (let* ([a5 hole_1]

 [a5 (+ a5 hole_2)]) a5))

li a5, 12288
addi a5, a5, -57

mov w0, 28123
li a5, 26094
addi a5, a5, 2029

??

GUESS: Propose translations, detect potential errors

C. Lee, A. Mahmoud, M. Kurek, S. Campanoni, D. Brooks, S. Chong, G-Y Wei, A. M. Rush, GUESS & SKETCH: Language Model Guided Transpilation. In The Twelfth International Conference on Learning Representations, 2024.

 GUESS & SKETCH: Language Model Guided Transpilation
Celine Lee1*, Abdulrahman Mahmoud2*, Michal Kurek2,

 Simone Campanoni3 , David Brooks2*, Stephen Chong2*, Gu-Yeon Wei2*, Alexander M. Rush1*,
Cornell University1, Harvard University2, Northwestern University3

Motivation

Results

SKETCH: Correct errors

General and domain-specific heuristics identify potential errors.

Translate assembly code with
language models and program
synthesis.

Without any extra training objectives, information from the language model
can effectively guide a symbolic solver.

Neurosymbolic assembly translation helps port software
in the face of increasingly heterogeneous hardware.

Solver-based program synthesis is kept tractable by constraining the inputs to
assembly basic blocks. Aligned input and output basic blocks are translated to a
Sketch solver language. The input basic block is the correctness criteria. Potential
errors are holes to be solved for.

GUESS & SKETCH extracts alignment and confidence information

from the LM then passes it to a symbolic solver to resolve

semantic equivalence of the transpilation input and output.

GUESS & SKETCH transpiles 57.6% more examples than GPT-4

and 39.6% more examples than an engineered transpiler.

Assembly code is composed of computer

hardware-specific operations divided into basic blocks.

Symbolic methods guarantee

correctness but scale poorly.

Hand-engineered transpilers

are expensive to make.

LMs produce plausible outputs,

but do not guarantee correctness.

< />

With the symbolic component, fewer samples are needed from
the language model.

Error Analysis
● Pre-trained LLMs produce instructions from different ISAs.
● Many assembly files exceed LLM context window.
● Attention alignment is not 100% accurate.
● Resulting search space for symbolic component can be too

large to resolve in a reasonable time frame.

RISC-V to ARMv8 ARMv8 to RISC-V

Proj. Euler Benchmx Unix Cmds Proj. Euler Benchmx Unix Cmds

Few-shot (GPT4) 11.1% 0 18.2% 4.44% 0 27.3%

Transpiler - - - 24.4% 12.5% 54.5%

FT StarCoder 8.9% 0 36.4% 8.9% 0 36.4%

FT CodeLlama 11.1% 0 36.4% 2.2% 0 36.4%

Enc-Decoder 68.9% 6.3% 36.4% 66.7% 6.25% 81.2%

GUESS & SKETCH 80.0% 18.8% 81.2% 75.6% 25.0% 81.2%

Project Euler

RISC-V to ARMv8 ARMv8 to RISC-V

Encoder-Decoder 30.1 34.3

GUESS & SKETCH 21.3 25.3

GUESS & SKETCH takes a neurosymbolic approach that
leverages the scalability of language models with the
correctness of symbolic solvers.

(Left: truth alignment; Right: attention matrix)

Target semantics for potential errors are extracted from the
input. Alignment between input and output is found in the
attention matrices.

Examples

Alignment A is extracted between subsequences b ∈ in x and y
by the highest aggregate attention score.

A E

Objective

For input program represented as sequence x,
produce the semantically-equivalent represented as
sequence y.

Semantic equivalence is measured by execution
equivalence on the domain of all program inputs .

For input sequence x, produce tuples:

(guessed translation y, subseq.s alignment A, potential token-level errors E)

Potential errors E are detected by probability
and generating out-of-scope references.

Sketches are created from each potentially-erroneous subsequence by
replacing each position that also satisfies with a hole .

Solve sketches by finding the mapping that populates all holes of the sketch
to satisfy the correctness spec set by where :

 .arch armv8-a
 .file "problem1.c"
 .text
 .section .rodata
 .align 3
.LC0:
 .string "%d\n"
 .text
 .align 2
 .global main
 .type main, %function
main:
.LFB0:
 .cfi_startproc
 stp x29, x30, [sp,
-32]!
 .cfi_def_cfa_offset 32
 .cfi_offset 29, -32
 .cfi_offset 30, -24
 mov x29, sp
 str wzr, [sp, 16]
 str wzr, [sp, 20]
 str wzr, [sp, 24]
 str wzr, [sp, 28]
 b .L2
.L6:
 ldr w2, [sp, 28]
 mov w0, 21846
 movk w0, 0x5555, lsl
16
 smull x0, w2, w0
 lsr x1, x0, 32

...

Avg. # lines In Out

Unix Commands 11 96 ✓ ✓

Project Euler 45 159 ✓

Benchmarks Game 16 484 ✓ ✓

Experiments

Train and test sets for transpilation are compiled to the ARMv8
and RISC-V architectures under the -O0 optimization flag.

